Part I.

ALGEBRA I
Time Limit: 10 minutes
The word "compute" calls for an exact answer in simplest form.
5-1. The quadratic polynomial $4 x^{2}-25$ factors into two linear factors with integer coefficients. Compute the sum of those linear factors.

5-2. In a survey of teenagers, $\frac{2}{3}$ of them like jazz music, $\frac{3}{4}$ of them like country music, and $\frac{4}{5}$ of them like pop music. Compute the least fraction of these teenagers that could possibly like all three kinds of music.

Part II.
GEOMETRY
Time Limit: 10 minutes
The word "compute" calls for an exact answer in simplest form.
5-3. Triangle $A B C$ has sides of length $A B=3, B C=5$, and $A C=7$. After a dilation, the image of $\triangle A B C$ is $\triangle D E F$. If $E F=105$, compute $D F$.

5-4. Points A and B have coordinates $A(-2,4)$ and $B(4,2)$. Suppose that point P is somewhere on the x-axis, at $(p, 0)$, such that the points A, P, and B are on a circle tangent to the x-axis. Compute p.

Part III.
ALGEBRA II / ADVANCED TOPICS
Time Limit: 10 minutes
The word "compute" calls for an exact answer in simplest form.
5-5. If $i=\sqrt{-1}$, compute the value of $(3-2 i)^{3}$ in the form $a+b i$.
5 - 6. Let A represent the sequence $3, \frac{3}{2}, \frac{3}{4}, \cdots$, with $a_{k}=3\left(\frac{1}{2}\right)^{k-1}$. Define a sequence B such that $b_{k}=a_{k}^{2}+a_{k}$. Compute the sum of all the terms of B.

R-1. Compute the smallest odd positive integer that is the product of three distinct prime numbers.

R-2. Let N be the number you will receive. The quadratic equation $x^{2}-8 x-N=0$ has two roots. Compute the greater of these two roots.

R-3. Let N be the number you will receive. An arithmetic sequence begins $18, N, \cdots$. The difference between any two consecutive terms is constant. Compute the fifth term in the sequence.

R-4. Let N be the number you will receive. A cylindrical can with a closed top and closed bottom has a surface area of $N \pi$ square cm and a base radius of 1 cm . Compute the volume of the can in cubic cm.

R-5. Let N be the number you will receive. The lateral area of a right circular cone is $N / 2$. The height of the cone is $\frac{\sqrt{15}}{2}$. Compute the radius of the cone.

